Distributed Sensor Networks with Collective Computation (DSN-CC) for *In-Situ* Sensing

A. Mielke, C. Boyle, S. Brennan J. Karlin¹, A. Maccabe¹, B. Martinez, D. Torney

Los Alamos National Laboratory, Los Alamos, NM 87545, ¹University of New Mexico, Albuquerque, NM 87131

LA-UR-03-8557, LA-UR-03-9015, LA-UR-04-1571 (LA-UR-04-2793)

Classical Sensor Network vs. DSN-CC Approach

Classical Advantages

- Little/no processing at the sensor.
- Simple sensor and network design.
- Raw data available at a central processing station (CPS).

DSN-CC Advantages

- Central processor absent.
- Tolerant to single-point failures.
- Easier scale-up in sensor number.



Figure 1: Classical Sensor Network Topology

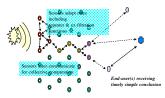


Figure 2: Distributed Sensor Network with Collective Computation Approach.

Theoretic Prediction of Energy and Time

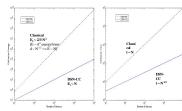


Figure 3: Energy and time for exfiltration scaling with sensor network size for Classical and DSN-CC approaches.

Commercial Wireless Sensor Mesh Networks

- Self-organizing/self-healing.
- Spread spectrum/ multi-hopping.
- Little processing power.

Figure 4: COTS Wireless Mesh Networks from Crossbow Technology, Millenial Net and Ember Corporation.

Source Detection Application

- · Radioactive source detection.
- Heterogeneous network approach.
- Motes detect vehicle presence.
- PDA's record and evaluate information from radiation detectors.

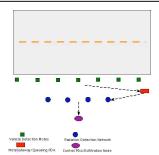


Figure 6: Source detection network design

Figure 7: Deployed vehicle detection mote network.

Bayesian Radiation Detection Methods

- Use counts collected in the network in successive intervals and collected background statistics.
- Integrate over possible trajectories.
- Results indicate the probability a source is present.

- In simulation:
 - Background rate = 10 cnts/sec.
- Sensors placed in a rectangle 10 m x 600 m.
- Source velocities between 20 and 60 km/hr and constant.

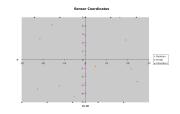


Figure 8: Sensor configurations modeled using Bayesian techniques.

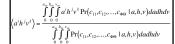

<u>Amplitude</u>	False Negative Rate	False Positive Rate
1	0.5	0.48
10	0.42	0.28
100	0.17	0.04
1000	0.002	0.001

Table 1: Simulation detection results for a network of 10 sensors deployed in a random arrangement.

<u>Amplitude</u>	False Negative Rate	False Positive Rate
1	0.46	0.5
10	0.16	0.04
100	0.00	0.00
1000	*	*

Table 2: Simulation detection results for a network of 100 sensors deployed in a random arrangement.

Bayesian Estimation of Radioactive-Source Parameters

- Assume these are independent Poisson random variables.
- \bullet <a> = source amplitude
- <h> = height of the trajectory above the line of equally-spaced sensors
- \bullet <v> = source velocity
- The estimates are characterized by a mean and standard deviation plotted in the following figures.
- Details in Nemzek et al., Distributed Sensor Networks for Detection of Mobile Radioactive Sources, IEEE Transactions on Nuclear Science, 51, in press (2004).

Fig. 5 Noise limitations (b**Text), d**Len, **Lenn, **namber of incorrect*[0, -7.5, number of time points*2], b**Ole on *6 en, as indicated in legands (a): *a*-ia, *b**b, and **o**r, photted on a function of ah. The average first memorates are plented, after five resultations of 9 fosseer mandem variables with the same expectations—for each time interval and each storact. (b): The standard deviations of the first moments over the five realizations of an aphated.

Conclusions

- This work demonstrates the capabilities of distributed sensor networks for the detection of mobile radioactive sources.
- These networks employ heterogeneous wireless nodes and heterogeneous sensors.
- Simulation and modeling guide system development and implementations.
- Bayesian methods are practical for source detection, but further adaptation is required.